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Long time dynamics of von Karman evolutions with thermal effects ∗

Igor Chueshov and Irena Lasiecka

abstract: This paper presents a short survey of recent results pertaining to
stability and long time behavior of von Karman thermoelastic plates. Questions
such as uniform stability - and associated exponential decay rates for the energy
function, existence of attractors in the case of internally/externally forced plates
along with properties of attractors such as smoothness and dimensionality will be
presented. The model considered consists of undamped oscillatory plate equation
strongly coupled with heat equation. There are no other sources of dissipation.
Nevertheless it will be shown that that the long-time behavior of the nonlinear
evolution is ultimately finite dimensional and ”smooth”. In addition, the obtained
estimate for the dimension and the size of the attractor are independent of the
rotational inertia parameter γ, which is known to change the character of dynamics
from hyperbolic (γ > 0) to parabolic like (γ = 0). Other properties such as
additional smoothness of attractors, upper-semicontinuity with respect to parameter
γ and existence of inertial manifolds are also presented.

Key Words:Von Karman evolutions, thermoelastic plates, attractors, dimen-
sion, rate of attraction.
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1. Introduction

In what follows below we shall describe model under consideration which is ther-
moelastic von Karman plate subjected to an external and internal forcing. Other
types of nonlinearities (eg Berger’s plates) can be considered as well -see [24,10,11]
- however for the sake of concretness we limit ourselves to von Karman nolinearities
which are representative of major mathematical difficulties encountered.

The corresponding equations (see, e.g., [43,45] and the references therein) have
the following form





utt − γ∆utt + α∆θ + ∆2u− [u, v(u) + F0] = p(x), x ∈ Ω, t > 0,

θt − η∆θ − α∆ut = 0, x ∈ Ω, t > 0,
(1)

where Ω is a bounded domain in R2 with the boundary ∂Ω = Γ, ∆ denotes the
Laplace operator, F0 and p are given functions with regularity specified later. Von
Karman bracket [·, ·] is given by

[u, v] = ∂2
x1

u · ∂2
x2

v + ∂2
x2

u · ∂2
x1

v − 2 · ∂2
x1x2

u · ∂2
x1x2

v , (2)

and Airy’s stress function v = v(u) is a solution to the problem

∆2v + [u, u] = 0, v|∂Ω =
∂v

∂n

∣∣∣
∂Ω

= 0. (3)

The temperature θ satisfies the Dirichlet boundary condition : θ = 0 on Γ. The
boundary conditions imposed on the displacement u are either “clamped”:

u =
∂

∂ν
u = 0 on Γ, (4)

where ν is the outer normal vector, or else “hinged (simply supported)”:

u = ∆u = 0 on Γ. (5)

The parameters α and η are positive and γ is non-negative. Parameter γ is propor-
tional to the square of the thickness of the plate and in some models it is neglected
(i.e. γ = 0). The case γ > 0 corresponds to taking into account rotational inertia
of filaments of the plate.

The characteristics of these two models, particularly with respect to stability
analysis, are very different. From physical point of view the main peculiarities of
the model in (1) are (i) possibility of large deflections of the plate and (ii) small
changes of the temperature near the reference temperature of the plate (which is
reasonable in the absence of phase transitions). We refer to [43,45,27,38] for further
discussions and references.

The main aim in this paper is to provide a survey of results pertinent to well-
posedness and long time behavior of the thermal von Karman evolutions described
by (1), (2). , Particular emphasis will be placed on dependence of regularity and
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long time characteristics with respect to varying parameters 0 ≤ γ ≤ Mγ for some
(fixed) positive constants Mγ . For simplicity we will be taking Mγ = 1. This
includes questions such as:
(i) existence and uniqueness of weak solutions,
(ii) uniform stability for the unforced system,
(iii ) existence of a compact global attractor and its structure,
(ii) smoothness and finite dimensionality of the attractor,
(iii) uniform decay rates to equilibria, and (iv) upper semi-continuity of
family of attractors (with respect to the parameters γ and
(v) existence of inertial manifolds.

In order to point out timeliness of the topic under consideration, we wish to
note that the issue of uniform decay rates for linear, unforced, thermoelastic plates
has been settled down only recently. Indeed, results of the previous literature
did require an addition of mechanical damping (boundary or interior), in order
to force exponential decay rates for the energy function, see [44] and references
therein. Instead, recent progress in the area of control theory and inverse problems,
[1,3,8,9,36,41,43,51,54,57] has provided a stimulus to the field and produced an
array of results on controllability, analyticity (when γ = 0) and uniform stability
without any mechanical dissipation. In fact, it was shown in [2] that not only
linear thermoelastic plates with either hinged or clamped boundary conditions are
exponentially stable without any mechanical dissipation, but also that the decay
rates are independent on the values of rotational parameter γ ≥ 0.

It is a purpose of this paper to provide fairly complete description of long
time behavior of thermoelastic plates driven by von Karman nonlinearity with
both internal and external forcing and without any mechanical (viscous or
structural) dissipation.

In order to gain a better understanding of the problem under consideration, one
should note that topological behavior of the model is strongly dependent on the
parameter γ ≥ 0 . It is by now well known, that the parameter γ changes drastically
the linear dynamics from analytic γ = 0 to hyperbolic-like γ > 0 [53,54]. This
implies that the flow has additional regularity for the limit case γ = 0, while these
properties completely disappear when γ > 0. Our main challenge is to characterize
long time behavior of the thermal plates, uniformly with respect to the values of
the parameter γ ≥ 0. This includes: (i) seeking an upper bound for dimensionality
of attractors that are uniform in γ and κ, (ii) seeking an uniform measure of
regularity enjoyed by trajectories evolving on the attractor, (iii) establishing upper
semicontinuity with respect to γ.

2. Generation of a semi-flow and its properties.

2.1. Abstract form of the problem. In what follows we assume that the
domain Ω is either smooth or rectangular. We denote by Hs(Ω) the L2-based
Sobolev space of the order s and by Hs

0(Ω) the closure of C∞0 (Ω) in Hs(Ω). We
also use the following notation:

||u|| ≡ |u|L2(Ω), (u, v) ≡ (u, v)L2(Ω), 〈u, v〉 ≡ (u, v)L2(Γ), ‖u‖s ≡ |u|Hs(Ω).
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In the space H = L2(Ω) we define the operator A by the formula

Au = −∆u, u ∈ D(A) = H2(Ω) ∩H1
0 (Ω)

and consider the operator Mγ = I+γA. It is well-known that the both operators A
and Mγ are positive self-adjoint operators in H. We also introduce the biharmonic
operator

A1u = ∆2u, u ∈ D(A1) =
{

H4(Ω) ∩H2
0 (Ω), (clamped b.c.);

{u ∈ H4(Ω) : u =∆u= 0 on Γ}, (hinged b.c.)

In the ”commutative” case of hinged boundary conditions (5) one has A1 = A2

which provides a lot of symmetry for the problem. Indeed, all the operators A, Mγ

and A1 do commute. This feature simplifies substantially the analysis with respect
to clamped case (4), where the latter requires several additional technical estimates
that account for the lack of commutativity.

We also introduce nonlinear mapping B(·) by the formula

B(u) = [u, v(u) + F0] + p(x), u ∈ H2(Ω), (6)

where v(u) ∈ H2(Ω) is determined by u via (3).
With the above notation, equations in (1) with the boundary conditions con-

sidered can be written in the form




Mγutt − αAθ + A1u = B(u),

θt + ηAθ + αAut = 0,
(7)

We equip (7) with initial data u|t=0 = u0, ut|t=0 = u1, θ|t=0 = θ0. We note that
long-time dynamics of the models in (7) with the hinged boundary conditions and
γ = 0 has been studied in [19] in the context of inertial manifolds.

2.2. Nonlinear semigroup. We begin by introducing appropriate phase (en-
ergy) spaces Hγ which capture dependence on the varying parameters γ. Our aim
here is to present well-posedness of a continuous semi-flow for the models (7). By
this we mean existence, uniqueness and continuous dependence of solutions with
respect to initial data and t > 0.

For every γ ≥ 0 we introduce the Hilbert space

Hγ = D(A1/2
1 )× Vγ ×H (8)

where H = L2(Ω), D(A1/2
1 ) = H2

0 (Ω) in the clamped case and D(A1/2
1 ) = D(A) =

(H2 ∩ H1
0 )(Ω) in the hinged case, and Vγ ≡ D(M1/2

γ ) which is H1
0 (Ω) for γ > 0

and L2(Ω) for γ = 0. We equip the space Hγ with the norm

|U |2γ = ‖A1/2
1 u0‖2 + ‖Mγ

1/2u1‖2 + ‖θ‖2, U = (u0; u1; θ),

We have that D(A1/2
1 ) ⊆ D(A) and ‖A1/2

1 u0‖ = ‖Au0‖ for u ∈ D(A1/2
1 ).
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We begin the discussion of wellposedness of weak solution by considering first
linear problem, ie when B(u) = 0. In this case standard application of Lumer-
Phillips Theorem yields an existence of a strongly continuous semigroup of con-
tractions Sγ

t defined on Hγ . However, the properties of this semigroup are very
different for γ > 0 and γ = 0. We have

section 1. • γ = 0: In the case rotational inertia are not accounted, the semi-
group S0

t is analytic on H0. [57,54,47]

• γ > 0: In the rotational case, the semigroup Sγ
t has predominantly hyperbolic

character. More specifically, it can be written as Sγ
t = T γ

t + Kt. where T γ
t is

a group and Kt is compact for every t > 0. [53,48].

Theorem 1 remains valid also in the case of ”free” boundary conditions [53,50].
Though, in this latter case the proofs are more delicate.

Wellposedness of solutions in the nonlinear case is more subtle. For the case γ =
0 the analysis of wellposedness relies on the additional regularity of the semigroup
(analyticity). However, arguing this way, the estimates representing wellposedness
and continuous dependence on the initial data do depend on γ. Instead, by using
sharp regularity of Airy’s stress function, (see [31] and also Lemma 1.2 below) this
can be avoided. As the result one obtains wellposedness theory with the estimates
independent on γ ≥ 0.

The following well-posedness result follows from regularity of von Karman
bracket (2) (see Lemma 1.2 below) along with analyticity property of the semi-
group when γ = 0.

Proposition 1.1 (Well-posedness, [26]). Assume that F0 ∈W 2
∞(Ω) and p ∈

L2(Ω). Then

• Existence and Uniqueness for all initial data U0 = (u0, u1, θ0) ∈ Hγ

problem (7) possesses a unique (weak) solution U(t) ≡ (u(t), ut(t), θ(t)) ∈
C([0,∞),Hγ) which depends continuously on the initial data. This solution
satisfies the energy balance equality

Eγ(u(t), ut(t), θ(t)) + η

∫ t

s

||A1/2θ(τ)||2dτ = Eγ(u(s), ut(s), θ(s)) (9)

for all t ≥ s ≥ 0, where Eγ(u, ut, θ) is the energy functional for the model (7)
given by

Eγ(u, ut, θ) = Eγ,κ(u, ut, θ)− 1
2

∫

Ω

([F0, u]u + 2pu)dx (10)

with

Eγ(u, ut, θ) =
1
2

[
||Au||2 + ||Mγ

1/2ut||2 +
1
2
||∆v(u)||2 + ||θ||2

]
. (11)
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Moreover, when γ = 0, U(t) ∈ C
(
(0, T ];H3(Ω)×H1(Ω)×H1(Ω)

)
for every

T > 0, and

‖u(t)‖23 + ‖ut(t)‖21 + ‖θ(t)‖21 ≤
Cκ(T, R)

t
, t ∈ (0, T ], |U |0,κ ≤ R. (12)

• Lipschitz property Let U1, U2 ∈ Hγ and |Ui|γ ≤ R. Then

|Sγ
t U1 − Sγ

t U2|γ ≤ eaRt|U1 − U2|γ , t > 0, (13)

where the constant aR > 0 does not depend on γ ≥ 0

The above Proposition allows to define a strongly continuous semi-flow -semigroup
Sγ

t acting on Hγ . The main idea behind the proof [26] is to consider the nonlinear
evolution as a locally Lipschitz perturbation of a contraction linear semigroup on
Hγ . Indeed, the nonlinear term B(u) is locally Lipschitz, on the strength of regu-
larity result given in (16). The key role in our analysis is played by the following
regularity of von Karman bracket (2).

Lemma 1.2 ( [25,31]). Assume that Ω is either smooth, bounded domain or a
rectangular domain. Let ∆−2 denotes the inverse of ∆2 supplied with clamped
boundary conditions. Then the bilinear map (u,w) 7→ G(u, w) ≡ ∆−2[u,w] is
bounded from H2(Ω)×H2(Ω) into W 2

∞(Ω). We also have the following estimates

|[u, w]|H−2(Ω) ≤ C|u|H1(Ω)|w|H2(Ω), u ∈ H1(Ω), w ∈ H2(Ω), (14)

|G(u, v)|W 2∞(Ω) ≤ C|u|H2(Ω)|v|H2(Ω), u, v ∈ H2(Ω). (15)

Consequently,

|[w, G(u, v)]|L2(Ω) ≤ C|u|H2(Ω)|v|H2(Ω)|w|H2(Ω). (16)

We note that standard regularity of Airy’s stress function [56]

|G(u, v)|H3−ε(Ω) ≤ C|u|H2(Ω)|v|H2(Ω), ε > 0 (17)

will not be sufficient for most of the arguments in this paper. In fact, regularity in
(17) does not imply (16), where the latter is essential for the analysis to follow.

The solutions to problem (7) generate a family of dynamical systems with the
phase spaces Hγ given by (8). The evolution operator Sγ

t is given by the formula
Sγ

t (u0;u1; θ0) = (u(t); ut(t); θ(t)), where u(t) and θ(t) solve (7) with initial data
in Hγ . So, in all cases considered we have well defined semi-flow on the space
Hγ . When γ > 0, the corresponding semi-flow is predominantly hyperbolic. When
γ = 0 the semi-flow is parabolic like.

In what follows below we discuss ”regular solutions”. The existence of such is
asserted below.
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Proposition 1.3 (Regular solutions, [26]). Let Wγ = {u ∈ D(A1/2
1 ) : A1u ∈

V ′
γ}, where V ′

γ is dual to Vγ = D(M1/2
γ ). We equip Wγ with the norm ‖A1 · ‖V ′γ .

For the initial data such that

u0 ∈ Wγ , u1 ∈ D(A1/2
1 ), θ0 ∈ D(A), (18)

the corresponding solutions (u(t), θ(t)) to problem (7) have the following regularity:

(u(t), ut(t), utt(t), θ(t), θt(t)) ∈ C
(
R+; Wγ ×D(A1/2

1 )× Vγ ×D(A)× L2(Ω)
)

.

Moreover w(t) = ut(t) and ξ(t) = θt(t) solves the following equations

Mγwtt − αAξ + A1w = B′(u(t))w, and ξt + ηAξ + αAwt = 0, (19)

with an appropriate initial data.

Since D(A1/4
1 ) ∼ H1

0 (Ω) ∼ D(M1/2
γ ) in the case γ > 0 [33] and thus by Closed

Graph Theorem M
−1/2
γ A

1/4
1 is an isomorphism on L2(Ω), we have that Wγ =

D(A3/4
1 ) ⊂ H3(Ω) and Vγ = H1

0 (Ω). In the case γ = 0 we obviously have that
Wγ ⊂ H4(Ω) and Vγ = L2(Ω).

2.3. Backward uniqueness of the semi-flow. Backward uniqueness for ther-
moelastic nonlinear plate, beside being of interest in its own rights, arises as an
issue in the context of studying properties of attractors. Indeed, it becomes a tool
in proving certain characteristics of attractors. Since the thermoelastic dynamics
is represented by a continuous semi-flow - and not a flow - the issue of backward
uniqueness is far from obvious. When γ = 0 the analyticity of the underlying
linear semigroup provides a tool (see, e.g., [37, Sect.7.3]) for the backward unique
continuation. However, when γ > 0, the problem is more subtle due to parabolic-
hyperbolic mixing of the dynamics. In fact, even for linear thermoelastic plates
with time independent coefficients, this property has been shown only recently [55]
by using complex analysis methods. Backward uniqueness, quantitatively, means
that two trajectories coinciding at a given time t > 0 must coincide also at any
earlier time. Precise formulation of the corresponding backward uniqueness result
is given below.

Proposition 1.4 (Backward Uniqueness, [40,26]). Let p ∈ L2(Ω) and F0 ∈
W 2
∞(Ω). Then the following statements hold:

• Let (u1(t), θ1(t)) and (u2(t), θ2(t)) be two solutions of equations (7) on an
interval [0, T ] such that

U i(t) ≡ (ui(t), ui
t(t), θ

i(t)) ∈ C([0, T ],Hγ), i = 1, 2.

If U1(T ) = U2(T ), then U1(t) = U2(t) for every t ∈ [0, T ].
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• Let u(t) ∈ C([0, T ],D(A1/2
1 )) and (w(t), ξ(t)) be a solution to the linear (non-

autonomous) equations (19) such that

W (t) ≡ (w(t), wt(t), ξ(t)) ∈ C([0, T ],Hγ).

If W (T ) = 0, then W (t) = 0 for every t ∈ [0, T ].

The proof of Proposition 1.4, given in [26], is based on adaptation of technique
presented in [40], where linear and unforced thermal plates with space and time
dependent coefficients are considered.

Backward uniqueness is a fundamental property not only in stability theory but
also in controllability theory.

2.4. Stationary solutions. We introduce the set of stationary points of Sγ
t

denoted by N (as we see below this set does not depend on γ ):

N = {V ∈ Hγ : Sγ
t V = V for all t ≥ 0} .

One can see that every stationary point V has the form V = (u, 0, 0) where u =
u(x) ∈ H2(Ω) is a weak (variational) solution to the problem

∆2u = [v(u) + F0, u] + p in Ω,

with the corresponding boundary condition (either (4) or (5)), where the function
v(u) solves (3). In particular, stationary point do not depend on the parameters
γ, α and η. One can also see that N ⊂ {U ∈ Hγ : |U |γ ≤ R0}, where R0 depends
on ‖F0‖W 2,∞(Ω) and ‖p‖L2(Ω) only. We use this fact in [26] to prove some uniform
estimates for the attractor.

It follows from the corresponding energy relation, the full energy Eγ given by
(10) ) is non-increasing. Therefore the set

Eγ
R =

{
U = (u0; u1; θ0) ∈ Hγ : Eγ(u0, u1, θ0) ≤ R2

}
(20)

is forward invariant for every R > 0, i.e., Sγ
t Eγ

R ⊂ Eγ
R for t ≥ 0. One can also see,

because of the topological equivalence between the norm induced by the energy and
the topology of Hγ that there exists R∗0 ≥ R0 which depends on ‖F0‖W 2,∞(Ω) and
‖p‖L2(Ω) only such that N ⊂ Eγ

R∗0
. As we see below this property makes it possible

to prove that the global attractor belongs to the set {U ∈ Hγ : |U |γ ≤ R∗}, where
R∗ depends on ‖F0‖W 2,∞(Ω) and ‖p‖L2(Ω) only.

3. Attractors for abstract dynamical systems

We recall (see, e.g., [6,17,65]) that by definition a global attractor for a dynam-
ical system (X, St) on a complete metric space X is a closed bounded set A in X
which is invariant (i.e. StA = A for any t > 0) and uniformly attracting, i.e.

lim
t→+∞

sup
y∈B

distX{Sty,A} = 0 for any bounded set B ⊂ X.
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Remark 2. It follows directly from the definition of that a global attractor for
(X, St) is a collection of all bounded full trajectories of the semi-flow St. We recall
the a continuous curve γ = {u(t) : t ∈ R} in X is said to be a full trajectory, if
Stu(τ) = u(t + τ) for all t ≥ 0 and τ ∈ R. We will use this simple observation in
the study of continuity properties of attractors with respect to parameters.

Let N be the set of stationary points of the dynamical system (X, St), i.e.

N = {v ∈ X : Stv = v for all t ≥ 0} .

We define the unstable manifold Mu(N ) emanating from the set N as a set of
all y ∈ X such that there exists a full trajectory γ = {u(t) : t ∈ R} with the
properties u(0) = y and distX(u(t),N ) → 0 as t → −∞. It is clear that Mu(N )
is an invariant set. It is also easy to prove (see, e.g., [6], [17] or [65]) that if the
dynamical system (X, St) possesses a global attractor A, then Mu(N ) ⊂ A. For
gradient systems it is possible to prove that Mu(N ) = A. We give the following
definition (see [6,17,34,42,65]).

Definition 2.1. A dynamical system (X,St) is said to be gradient if it possesses
a strict Lyapunov function, i.e. there exists a continuous functional Φ(y) defined
on X such that (i) the function t 7→ Φ(Sty) is nonincreasing for any y ∈ X, and
(ii) the equation Φ(Sty) = Φ(y) for all t > 0 and for some y ∈ X implies that
Sty = y for all t > 0, i.e. y is a stationary point of (X,St).

It follows from energy relation (9) that the the energy Eγ(u, ut, θ) is a strict
Lyapunov function for the dynamical system (Hγ , Sγ

t ). Thus this system is gradi-
ent.

We have the following result on the structure of a global attractor (for the proof
we refer to any book from the list [6,17,34,42,65]).

section 3. Let a gradient dynamical system (X, St) possess a compact global at-
tractor A. Then A = Mu(N ). Moreover the global attractor A consists of full
trajectories γ = {u(t) : t ∈ R} such that

lim
t→−∞

distX(u(t),N ) = 0 and lim
t→+∞

distX(u(t),N ) = 0. (21)

The following assertion describes long-time behavior of individual trajectories
(for the proof we refer to [17] or [65], for instance).

section 4. Assume that a gradient dynamical system (X,St) possesses a compact
global attractor A. Then for any x ∈ X we have limt→+∞ distX(Stx,N ) = 0, i.e.
any trajectory stabilizes to the set N of stationary points.

Theorems 3 and 4 imply the following assertion.

Corollary 4.1. Assume that a gradient dynamical system (X, St) possesses a com-
pact global attractor A and N = {e1, . . . , en} is a finite set. Then A = ∪n

i=1Mu(ei),
where Mu(ei) is the unstable manifold of the stationary point ei, and
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(i) the global attractor A consists of full trajectories γ = {u(t) : t ∈ R} con-
necting pairs of stationary points, i.e. any u ∈ A belongs some full trajectory
γ and for any γ ⊂ A there exists a pair {e, e∗} ⊂ N such that u(t) → e as
t → −∞ and u(t) → e∗ as t → +∞;

(ii) for any v ∈ X there exists a stationary point e such that Stv → e as t → +∞.

The following assertion provides exponential rate of stabilization to the attrac-
tor along with some additional properties of the attractor (see, e.g., [6], [34] and
also Theorems 4.7 and 4.8 in the survey [62]).

section 5. In addition to previous hypotheses, asssume that (i) an evolution op-
erator St is C1, (ii) the set N of equilibrium points is finite and all equilibria are
hyperbolic, and (iii) there exists a Lyapunov Φ(x) function such that Φ(Stx) < Φ(x)
for all x ∈ X, x 6∈ N and for all t > 0. Then

• For any y ∈ X there exists e ∈ N such that

‖Sty − e‖X ≤ Cye−ωt, t > 0.

Moreover, for any bounded set B in X we have that

sup {dist (Sty,A) : y ∈ B} ≤ CBe−ωt, t > 0. (22)

Here above A is a global attractor, Cy, CB and ω are positive constants, ω in
(22) depends on the minimum, over e ∈ N , of the distance of the spectrum
of D[S1e] to the unit circle in C.

Asymptotic smoothness is the most critical property which is necessary for
the existence of a compact global attractor. There are several approaches to the
proof of this property. For instance, we can use either a splitting method (see
[6,17,34,65] and the references therein) or the method of energy type identities (see
[7] and also the survey [62]). However the stabilizability estimate which we prove
in [26] makes it possible to apply the following criterium (see [12,34] and also [24]
for some generalizations) for the proof of asymptotic smoothness of the dynamical
system (Hγ , Sγ

t ) generated by (1).

section 6. Let (X,St) be a dynamical system on a complete metric space X en-
dowed with a metric d. Assume that for any bounded positively invariant set B in
X there exist numbers T > 0 and 0 < q < 1, and a pseudometric %T

B on C(0, T ; X)
such that

(i) the pseudometric %T
B is precompact (with respect to X) in the following sense:

any sequence {xn} ⊂ B has a subsequence {xnk
} such that the sequence

{yk} ⊂ C(0, T ;X) of elements yk(τ) = Sτxnk
is Cauchy with respect to %T

B;

(ii) the following inequality holds

d(ST y1, ST y2) ≤ q · d(y1, y2) + %T
B({Sτy1}, {Sτy2}), (23)

for every y1, y2 ∈ B, where we denote by {Sτyi} the element in the space
C(0, T ;X) given by function yi(τ) = Sτyi.
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Then (X, St) is an asymptotically smooth dynamical system.

An important characteristic of a global attractor is its (fractal) dimension. We
recall that the fractal dimension dimX

f M of a compact set M in a complete metric
space X is defined by

dimX
f M = lim sup

ε→0

ln N(M, ε)
ln(1/ε)

,

where N(M, ε) is the minimal number of closed sets in X of the diameter 2ε
which cover the set M . We note that fractal (dimX

f M) and Hausdorff (dimX
H M)

dimensions satisfies the inequality dimX
f M ≥ dimX

H M . Thus the finiteness of
dimX

H M implies the finiteness of the Hausdorff dimension and lower bounds for
dimX

H M provide us with lower bounds for the fractal dimension.
Our proof of finite dimensionality of the attractors for (HγSγ

t ) is based on the
following assertion (see [24] and also [21,22] which contain other versions of the
theorem stated below).

section 7. Let X be a Banach space and M be a bounded closed set in X. Assume
that there exists a mapping V : M 7→ X such that M ⊆ V M and also

(i) V is Lipschitz on M , i.e, there exists L > 0 such that

‖V v1 − V v2‖ ≤ L‖v1 − v2‖, v1, v2 ∈ M ;

(ii) there exist compact seminorms n1(x) and n2(x) on X such that

‖V v1 − V v2‖ ≤ η‖v1 − v2‖+ K · [n1(v1 − v2) + n2(V v1 − V v2)]

for any v1, v2 ∈ M , where 0 < η < 1 and K > 0 are constants (a seminorm
n(x) on X is said to be compact iff for any bounded set B ⊂ X there exists
a sequence {xn} ⊂ B such that n(xm − xn) → 0 as m, n →∞).

Then M is a compact set in X of a finite fractal dimension. Moreover, we have
the estimate

dimX
f M ≤

[
ln

2
1 + η

]−1

· ln m0

(
4K(1 + L2)1/2

1− η

)
,

where m0(R) is the maximal number of pairs (xi, yi) in X × X possessing the
properties

‖xi‖2 + ‖yi‖2 ≤ R2, n1(xi − xj) + n2(yi − yj) > 1, i 6= j.

4. Asymptotic behavior of von Karman thermal plates

4.1. Exponential decays to a single equilibrium. We begin by recalling
uniform stability results in the case when the attractor is trivial and consists just
of one point. Wlog we assume that the only equilibrium is zero, so we take F0 =
0, p = 0. In that case we have
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section 8. Let F0 = 0, p = 0. Then the energy of the nonlinear plate decays to
zero exponenntially, with the rates independent on 0 ≤ γ ≤ 1. This is to say there
exists constant ω > 0 such that

Eγ(u(t), ut(t), θ(t)) ≤ Eγ(u(0), ut(0), θ(0))e−ωt,

where the energy functional Eγ(u, ut, θ) is given by (11).

Exponential decay rates presented in theorem 8 were established in [2] -for the
linear case and in [4,5] -for the nonlinear case. We also note that the same result
holds for ”free” boundary conditions-though the proof is much more technical [3].
In the case γ = 0 thermal plates with hinged boundary conditins have been known
for some time [41,38] to be exponentially decaying.

Other related results on exponential stability of nonlinear thermal plates can
be found in [51,8,4,5]

4.2. Global Attractors. Our main results on global attractors for dynamical
systems (Hγ , Sγ

t ) with 0 ≤ γ ≤ 1 are formulated below.

section 9 (Compact Attractors). For every 0 ≤ γ ≤ 1 the dynamical system
(Hγ , Sγ

t ) is gradient and possesses a compact global attractor Aγ = Mu
γ (N ), where

Mu
γ (N ) is unstable manifold emanating from the set N of stationary points. Thus

the conclusions of Theorem 3 and Theorem 4 hold true for (Hγ , Sγ
t ). Moreover,

• Finite-dimensionality: there exists d0 > 0 independent of γ such that
fractal dimension of Aγ in Hγ admits the estimate dimHγ

f Aγ ≤ d0 for 0 ≤
γ ≤ 1.

• Regularity: any full trajectory {U(t) : t ∈ R} from the attractor possesses
the properties

||Au(t)||2 + ||M1/2
γ ut(t)||2 + ||∆v(u(t))||2 + ||θ(t)||2 ≤ R2

1 (24)

and

‖u(t)‖23 + ||Aut(t)||2 + ||M1/2
γ utt(t)||2 + ||θt(t)||2 + ||Aθ(t)||2 ≤ R2

2 (25)

for all t ∈ R, where the both constants R1 and R2 do not depend on 0 ≤ γ ≤ 1
and R1 is also independent of η and α and in the case γ = 0 we additionally
have that ‖u(t)‖4 ≤ R2 for t ∈ R);

• Upper semi-continuity: the family of the attractors Aγ is upper semi-
continuous with respect to γ in the sense that for any γ0 ≥ 0 we have that

lim
γ→0

sup
{
distHγ0

(U,Aγ0) : U ∈ Aγ
}

= 0. (26)

We note that in the case of isothermal von Karman plate upper semi-continuity
of the attractor when γ → 0 was proved in [16].

Our next result relies on Theorem 5 and deals with the case when the set N is
finite and every stationary point is hyperbolic.
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section 10 (Exponential Attractor). Assume that N = {Ei : i = 1, . . . , n} is a
finite set. Then the conclusions of Corollary 4.1 holds true for the system (Hγ,, S

γ
t )

for every γ ≥ 0 In particular, Aγ = ∪n
i=1Mu(Ei). Moreover, if every stationary

point Ei = (ei; 0; 0) is hyperbolic in the sense that the equation A1w = B′(ei)w,
where B′(u) is Frechet derivative of the mapping B given by (6), has only trivial
solutions. Then:

• For any U0 ∈ Hγ , there exists an equilibrium point E = (e, 0, 0) ∈ Hγ and
constants ω > 0 and CU0 > 0 (possibly depending on γ) such that

|Sγ
t U0 − E|γ ≤ CU0e

−ωt, t > 0.

Moreover, for any bounded set B in Hγ we have that

sup {dist (Sγ
t ,Aγ) : U ∈ B} ≤ CBe−ωt, t > 0. (27)

Here Aγ is the global attractor, CB and ω are positive constants which may
depend on γ.

• For each E ∈ N the unstable manifold Mu(E) is an embedded C1-submani-
fold of Hγ of finite dimension ind (E), which implies that

dimfAγ ≥ dimHAγ = max
E∈N

ind (E). (28)

Remark 11. The first statement of Theorem 10 implies that the global attractor is
exponential. However this property requires finiteness and hyperbolicity of the set
N of equilibria. Whether the dependence of exponential rate of attraction in (27)
on γ ≥ 0 could be surpressed, is not known at the present time. We also note that in
the general (non-hyperbolic) case one can apply Corollary 2.23 [24] and argument
similar given in the proof of Theorem 4.43 [24] to obtain the existence of exponential
fractal attractor (inertial set) with an uniform (with respect to γ) estimate for
the dimension. For details concerning a general notion of an exponential fractal
attractor we refer to the monograph [29].

Remark 12. If we compare (28) with the result on the dimension from Theorem 9,
then we obtain that maxE∈N ind (E) can be estimated from above by a constant
independent of γ.

Remark 13. We note that the present treatment does not rely on analyticity of
the semigroup associated with the model when γ = 0. All the estimates obtained
for the size and the dimension of the attractor are independent on γ ≥ 0. This was
possible to achieve for both simply supported and clamped boundary conditions.
However, in the case of free boundary conditions, the situation is more complicated.
To our best knowledge, there are no appropriate estimates -independent on γ even
in the linear case. Nevertheless, the methods of the paper [26] provide all the
results on attractors for each value of the parameter (γ > 0 and γ = 0). In the
case γ = 0, critical use of the analyticity (see, e.g., [54]) of the semigroup will
have to play the role. How to make these estimates (in the case of free boundary
conditions) uniform with respect to γ is an open problem.
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4.3. Inertial Manifolds. For plates with hinged boundary conditions and spe-
cial geometry of the domain Ω one can prove [19] existence of inertial manifolds.
We begin by recalling definition of inertial manifold.

Definition 13.1. Let M be a finite-dimensional surface in H of the following
structure:

M≡ {p + Φ)p), p ∈ PH, Φ : PH → (I −P)H} (29)

where P is a finite dimensional projector and Φ is a Lipschitz continuous mapping.
Then, M is said to be an inertial manifold for the dynamical system (St,H), iff
(i) the surface M is invariant under the flow, (ii) M is exponentially attracting.

In the case of locally Lipschitz nonlinearities, a locally invariant manifold is
relevant. This means that the invariance property is restricted to some ball in H.

Definition 13.2. The Lipschitz surface M is said to be locally invariant inertial
manifold, if it is exponentially attracting and, moreover, there exists R > 0 such
that the ball BR in H is absorbing, and M is locally invariant in BR. This is to
say, for all u ∈ BR ∩M, Stu ∈ BR for t ∈ [0, T ], we have that Stu ∈M, t ∈ [0, T ].

The general theory of inertial manifolds was started with the paper [32] and
has been developed and widely studied for deterministic systems by many authors
(see, e.g., the monographs [17,28,65] and the references therein). All known re-
sults concerning existence of inertial manifolds require some gap condition on the
spectrum of the linearized problem.

In the case when Ω is a rectangle, γ = 0, and the boundary conditions associated
are hinged, an existence of inertial manifold has been established in [19]. This result
is reported below.

We recall that the abstract form of the thermoelastic system with hinged bound-
ary conditions is written as

utt − αAθ + A2u = B(u), θt + ηAθ + αAut = 0 (30)

An important role in this result is played by the properties of the roots of charac-
teristic equation

z3 − ηz2 + (1 + α)z − η = 0

This equation has one positive root z1 and the two remaining, z2 and z3, are
complex conjugates.

section 14. Consider (30) where Ω = (0, l1) × (0, l2) with p ∈ L2(Ω) and F0 ∈
W 2,∞(Ω). We assume

1. l1
l2

is rational

2. 1
3 < 1+α2

η2 < ∞

3. either Re z2
z1

is rational , or else α is sufficiently large.
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Then the flow St corresponding to (30) and defined on H = D(A)×L2(Ω)×L2(Ω)
possesses a locally invariant inertial manifold.

The proof of Theorem 14, given in [19], is based on spectral analysis of the
linear problem. The key element is to show that certain gap condition between
eigenvalues separating stable and unstable manifolds is satisfied. To accomplish
this, number theoretic properties are exploited. Application of these necessitates
imposition of geometric conditions listed in the theorem. Whether the same result
holds in a broader context (e.g., for the case γ > 0, and/or for non-rectangle
domains, or else with other boundary conditions, etc.) remains an open problem.
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